
186

Chapter 7

Files

Files provide permanent storage of data. Any program that retains data from
one execution of the program to another stores that data in files, whether the
user can see those files or not. For example, any program that has a ”prefer-
ences” tab that allows you to change some features of the program must store
those preferences in a file. In this chapter we will look at ways to incorporate
files into our programs, using files both for input (reading data from a file) and
output (storing data in a file).

187

188 CHAPTER 7. FILES

7.1 Concepts

There are two basic types of files: text files, which consist of a sequence of
characters, and binary files, which contain binary encodings of information.
Microsoft Word, and many other commercial programs that format information,
create binary files because data can usually be packed much more efficiently into
binary files than into text files. A Python program can open up binary files,
but in order to obtain useful information from a binary file you need to know
the way it is encoded; this information may or may not be available to you. In
this chapter we will only look at text files. You can create a text file with the
Python editor. Most word processing programs, such as Microsoft Word, also
enable you to save files in text format.

Since files exist apart from your programs, an extra step is needed to make a
file available to your program. This is called opening the file. You must always
open a file before using it. This provides a link between the physical file and
your program. When you open a file, you must say how you are going to use it:
whether you want to read data out of it or write data into it. You may want to
do both, but only one of these can be done at any given time.

The open function is

open(< f i l e name>, <mode>)

where both the <file name> and <mode> are strings. This returns a file object
that you need to reference each time you use the file, so you should save it in a
variable, as in

F = open(< f i l e name>, <mode>)

In this open statement the mode can be one of three strings:

• ”r” means you want to open an existing file to read information from it.
Your program will crash if the file is not found.

• ”w” means you want to create a new file so you can write information into
it. Any previous file with this file name will be destroyed.

• ”a” means you want to append information at the end of a new or existing
file.

For example, we could open for reading a file whose name is ”data.txt” with
the statement

F = open(” data . t x t ” , ” r ”)

Note that to open a file you need to know the full name, including any file
extension such as ”.txt” Many modern software packages hide the file extension;
you need to know it in order to write a program that opens a file with this
extenstion. If you create a text file to use in a Python program, use a standard,
explicit file extension, such as ”.txt”.

It is possible to specify a full path to a file, such as

7.1. CONCEPTS 189

F=open(”C:\Documents and S e t t i n g s \Bob\My Documents\ data . t x t ” , ” r ”)

If the file is in the same folder as the Python program that uses it, you only
need to give the file name rather than its full path. For example, we might use

F=open(” data . t x t ” , ” r ”)

if the ”data.txt” file is in the same folder as the program. We will later see a
graphical way to obtain the path to a file; for now we will just work with files
in the same folder as our programs.

With other data structures there are simple ways to move around in the
structures. We call these ”random access” structures because we can move
directly to arbitrary positions in the structure. With files random access is much
more difficult. We generally read files from beginning to end. When writing files
we also write from beginning to end, rather than inserting characters into the
middle of a file. This makes some file manipulations awkward. It is usually
easier to work with lists and other structures internal to Python than with files.
A simple paradigm for handling files is:

• Read the data from your file into a list or other structure at the start of
your program.

• Manipulate the list or other structures.

• At the end of the program write the data from your structures back into
the file.

